- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000001000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Griffin, Mia (1)
-
Harvey, Philip (1)
-
Lehman, Aaron (1)
-
Thwala, Menziwokuhle (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The goal of this project is to gain a better understanding of the importance of structural integrity and how structures behave under motion. This report intends to investigate and analyze structural dynamics’ concepts with 3-D printed components in four unique challenges. Challenge 1 explores angular acceleration and rotational dynamics through a 3-D printed wheel. Challenge 2 focuses on reciprocating motion by designing and assembling a mechanism that is connected to a 3-D printed shake table. Challenge 3 involves creating structural columns which are assembled in a single-story structure. It also dives into concepts such as the natural frequency of a structure and how elements of design will influence it. Challenge 4 incorporates both Challenges 2 and 3 by shaking the single-story structure through the reciprocating motion mechanism. It also looks at important structural dynamics’ concepts such as transmissibility and resonance.The 3D-printing Dynamics Design (3D3) Competition intends to train School of Civil Engineering & Environmental Science (CEES) undergraduates at the University of Oklahoma in fundamental concepts related to vibrations, structural dynamics, and earthquake engineering through a semester-long, hands-on competition run in parallel with Introduction to Dynamics for Architectural and Civil Engineers (CEES 3263). Competition participants, or 3D3 Scholars, design, build, and test a bench-scale shake table using 3D-printed components. The designs of these shake tables are published here, along with all the STL files needed for teachers or students elsewhere to fabricate the tables. Also, the data collected during the challenges is published.more » « less
An official website of the United States government
